home *** CD-ROM | disk | FTP | other *** search
Text File | 1996-08-13 | 28.8 KB | 1,192 lines |
- à 7.4èPower Series Solutions Near a Regular Sïgular Poït
-
- äè Classify ê poït about which ê series is ë be
- expåed as Ordïary, Regular Sïgular or Irregular Sïgular
-
- â è Forè xìy»» + (1+x)y» + 3xy = 0èabout x = 0.èAs ê
- coefficient ç y»» is zero at x = 0, it is NOT an ORDINARY
- poït.èDividïg by xì givesèy»» + [(1+x)/x]y» + [3/x]y = 0
- asèèèèè1+xèèèèèèèèèèè 3
- èèlimèx ─────è= 1èåè limèx║ ───è= 0
- èèx¥0èèèxèèèèèèè x¥0èèèx
- are both fïite, x = 0 is a REGULAR SINGULAR POINT
-
- éS è For ê general, lïear second order differential equation,
-
- P(x)y»» + Q(x)y» + R(x)y = 0,
-
- it is assumed that êre are no common facërs as êy can be
- cancelled.
-
- èèA poït x╠ is called an ORDINARY POINT if P(x╠) ƒ 0.
- If P(x╠) = 0, ên x╠ is called a SINGULAR POINT.
-
- èèWith a differential equation with sïgular poïts, êre
- are usually just a few sïgular poïts,so it is reasonable ë
- ask why it is important ë attempt ë produce a solution at
- a sïgular poït?èIt turns out that, ï many cases, ê
- most ïterestïg phenomena occur near sïgular poïts.èSuch
- behavior ïcludes large functional values (tendïg ë un-
- bounded solutions) å rapidly oscillatïg functions.
-
- èèThere is a class ç sïgular poïts for which a modified
- power series solution can be obtaïed via a method due ë
- FROBENIUS.èIt can be used when ê poït is a REGULAR
- SINGULAR POINT.èThis means that ê poït x╠ satisfies
-
- 1) P(x╠) = 0
-
- 2) èèèèèèQ(x)
- lim (x-x╠) ────── is fïite
- x¥0èèèè P(x)
-
- 3) èèèèèè R(x)
- lim (x-x╠)ì ────── is fïite
- x¥0èèèèèP(x)
-
- A sïgular poït that does not satisfy eiêr 2) or 3) is
- an IRREGULAR SINGULAR POINT
-
- 1 xìy»» + 2xy» + y = 0èabout x = 0
-
- A) Ordïary
- B) Regular Sïgular
- C) Irregular Sïgular
-
- ü The coefficient ç y»», xì is 0 for x = 0 so this
- is not an ORDINARY poït.
-
- èèèèèè 2x
- èè limèx ────è=è2è
- èè x¥0èè xì
-
- è èèèèèèè 1
- èè limèxì ────è=è1
- èè x¥0èèèx║
-
- Both ç êse limits are fïite so x = 0 is a REGULAR
- SINGULAR POINT
-
- ÇèB
-
- 2 (xì-1)y»» + (x+2)y» + xy = 0 about x = 0
-
- A) Ordïary
- B) Regular Sïgular
- C) Irregular Sïgular
-
- ü è The coefficït ç y»» isèxì-1.èThis expression evaluated
- at x = 0 is not zero å hence x = 0 is an ORDINARY poït.
-
- ÇèA
-
- 3 (xì-1)y»» + (x+2)y» + xy = 0 about x = 1
-
- A) Ordïary
- B) Regular Sïgular
- C) Irregular Sïgular
-
-
- ü The coefficient ç y»», xì - 1 is 0 for x = 1 so this
- is not an ORDINARY poït.
-
- èèèèèèèè x+2èèèè
- èè limè(x-1) ────è
- èè x¥1èèèèxì-1
- èèèèèèèèèèx+2
- è = limè(x-1) ──────────
- èè x¥1èèèè(x-1)(x+1)
- è èèèèè x+2èèè3
- è = limè─────è= ───
- èè x¥1è x+1èèè2
-
- èèèèèèèèè x
- èè limè(x-1)ì ─────
- èè x¥1èèèèèxì-1
- èèèèèèèèèèèèèèèx
- è = limè(x-1)ì ──────────
- èè x¥1èèèè (x-1)(x+1)
- èèèèèèèèè(x-1)xèèè(-1)(1)èèèè1
- è = lim ────────è=è───────è=è- ───
- èè x¥1èèx+1èèèèè2èèèèè 2
-
- Both ç êse limits are fïite so x = 1 is a REGULAR
- SINGULAR POINT
-
- ÇèB
-
- 4 (x-1)ìy»» + 2xy» + (x-1)yè=è0èabout x = 1
-
- A) Ordïary
- B) Regular Sïgular
- C) Irregular Sïgular
-
-
- ü The coefficient ç y»», (x-1)ì is 0 for x = 1 so this
- is not an ORDINARY poït.
-
- èèèèèèèèè2xèèèè
- èè limè(x-1) ──────è
- èè x¥1èèèè(x-1)ì
-
- è èèèèèè2xè
- è = limè─────è which is undefïed
- èè x¥1è x-1è
- Also
- èèèèèx-1
- èè limè(x-1)ì ──────
- èè x¥1èèèè (x-1)ì
- èèèèèèèèèè
- è = limèx-1è=è0
- èè x¥1èè
- èèè
- One ç êse limits is fïite but ê oêr does not exits,
- so x = 1 is an IRREGULAR SINGULAR POINT
-
- ÇèC
-
- äè Solve ê followïg differential equations about a
- regular sïgular poït.è
-
- âè2xìy»» + (xì-x)y» + y = 0 about x = 0. Assume a solution ç
- ê formèΣ a┬xⁿó¡, substitute ïë ê equation å ê
- INDICIAL EQUATION becomesè2mì - 3m + 1 = 0 which has ê
- two solution m = 1/2, 1.èSubstitutïg m = 1/2 ïë ê
- recursion relation gives ê solution
- xî»ì[ 1 - 1/4 x + 3/80 xì - ∙∙∙] while ê m = 1 solution is
- x[1 - 1/3 x + 1/15 xì - ∙∙∙ ]
-
- éSèThe method used ë solve a lïear, second order differential
- equation NEAR a REGULAR SINGULAR POINT is a combïation ç
- ê methods described ï ê previous two sections.èSection
- 7.2 used a power series solution ç ê form
- èèèèè▄
- èèèèèΣèa┬xⁿ
- èèèè n=0
- ë fïd a solution about an ORDINARY POINT.èThe assumed
- solution was differentiated å was substituted ïë ê
- differential equation.èThe RECURSION RELATION was determïed
- å subsequently ê coefficients a┬ were found ï terms ç
- a╙ å a¬.
-
- èèIn Section 7.3, ê EULER type differential equation,
- which has x = 0 as a REGULAR SINGULAR POINT, assumed a
- solution ç ê formèx¡èwhere m can be any real number.
- Differentiatïg ê assumed solution å substitutïg it
- ïë ê differential equation produces a quadratic equation
- for m.èThere are three distïct classes ç solutions ë ê
- Euler type differential equation based on ê three distïct
- types ç solutions ë a quadratic equation
- 1)èèdistïct real roots
- 2)èèrepeated real roots
- 3)èècomplex conjugate roots
-
- èèThe solution ç a lïear, second order differential
- equation about a regular sïgular poït is assumed ë be ç
- ê form
- èèèè ▄èèèèèè▄
- y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
- èèèèn=0èèèèèn=0
-
- where m can be an arbitrary real number, not just an ïteger.
-
- èèDifferentiation yields
- èèè▄
- y» =èΣè(n+m)a┬xⁿó¡úî
- èè n=0
-
- èèè ▄
- y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
- èèèn=0
-
- èèEverythïg is substituted ïë ê differential equation
-
- P(x)y»» + Q(x)y» + R(x)yè=è0
-
- èèForè 2xìy»» + (xì-x)y» + y = 0èabout x = 0è
- èèèè ▄èèèèèèèèèèèèèèèèè ▄
- èè2xìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+è(xì-x)èΣ (n+m)a┬xⁿó¡úî
- èèèèn=0èèèèèèèèèèèèèèèè n=0
- èèèèèèèè ▄
- èèèèèèè+èΣèa┬xⁿó¡è=è0
- èèèèèèèèn=0
-
- orè ▄èèèèèèèèèèèèè▄
- èè Σè2(n+m)(n+m-1)a┬xⁿó¡è+èΣè(n+m)a┬xⁿó¡óî
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèèèè▄
- èèè-èΣè(n+m)a┬xⁿó¡è+èΣèa┬xⁿó¡è=è0
- èèèèn=0èèèèèèèèn=0
-
- As ê second sum's exponent is different from ê rest, it
- will be re-ïdexed so that all exponents are ê same.
-
- èè ▄èèèèèèèèèèèèè▄
- èè Σè2(n+m)(n+m-1)a┬xⁿó¡è+èΣè(n+m-1)a┬▀¬xⁿó¡
- èèn=0èèèèèèèèèèèèn=1
- èèèè ▄èèèèèèèèè▄
- èèè-èΣè(n+m)a┬xⁿó¡è+èΣèa┬xⁿó¡è=è0
- èèèèn=0èèèèèèèèn=0
-
- As ê second sum starts at n = 1 while ê oêrs start at
- n = 0, ê first term will be isolated å ê remaïïg
- terms combïed ïë one sum
-
- 0è=è[ 2m(m-1) - m + 1 ] a╠x¡
- è ▄
- +èΣè{ 2(n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - (n+m)a┬ + a┬ }xⁿó¡
- èn=1
-
- è For a differential equation ë have a non-trivial solution,
- ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
- yields ê INDICIAL EQUATION
-
- 2m(m-1) - m + 1è=è0
-
- Solvïg ê ïdicial equation which will be quadratic ï m
- will produce 2 roots which are called ê EXPONENTS OF THE
- SINGULARITY.èThese values determïe ê behavior ç ê
- solution near ê poït ç sïgularity.
-
- è As usual with quadratic equations, êre are three cases
- as ë ê types ç solutions produced.èThese, however, are
- slightly different than ê usual classifications.
-
- CASE I is for DISTINCT ROOTS ç ê ïdicial equation that
- DO NOT DIFFER BY AN INTEGER.èSay êse roots are l å g.
- Reconsider
-
- 0è=è[ 2m(m-1) - m + 1 ] a╠x¡
- è ▄
- +èΣè{ 2(n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - (n+m)a┬ + a┬ }xⁿó¡
- èn=1
-
- The ïdicial equation is
-
- 2m(m-1) - m+ 1è=è0
-
- 2mì - 2m - m + 1 = 0
-
- 2mì - 3m + 1 = 0
-
- This facërs ë
-
- (2m - 1)(m - 1) = 0
-
- The solutions are
-
- m =è1/2,è1
-
- As l å g are solutions ç ê ïdical equation, ê first
- term ç ê solution will be zero, so for m = l or g this
- reduces ë
- ▄
- Σ { 2(n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - (n+m)a┬ + a┬ }xⁿó¡è=è0
- n=1
-
- For this sum ë be zero, it is sufficient that every term ï
- ê brace be zero.èSettïg each ë zero produces ê
- RECURSION RELATION which for this example will be
-
- èè 2(n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - (n+m)a┬ + a┬è=è0
-
- As ê roots for m are distïct å do not differ by an
- ïteger, subsitutïg l å ên g ïë ê recursion relation
- will produce two LINEARLY INDPENDENT power series solutions
-
- èèFirst, let m =1/2 å substitute ïë ê recursion
- relation
-
- èè2(n+1/2)(n-1/2)a┬ + (n-1/2)a┬▀¬ - (n+1/2)a┬ + a┬ = 0
-
- Multiplyïg through by 2 ë get rid ç ê fractions gives
-
- (2n+1)(2n-1)a┬ + (2n-1)a┬▀¬ - (2n-1)a┬ + 2a┬ = 0
-
- Combïïg like terms å rearrangïg yields
-
- [ (2n+1)(2n-1) - (2n-1) + 2 ] a┬è=è- (2n-1)a┬▀¬
-
- orèèèèèèèèèèè (2n-1)
- èèèa┬ =è- ────────────────────────────èa┬▀¬è n ≥ 1
- èèèèèèè (2n+1)(2n-1) - (2n-1) + 2n
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -(1)/[3(1)-1+2] a╠ = -1/4 a╠
-
- 2èèè a½ = -(3)/[5(3)-3+2] a¬ = -3/14 a¬ = 3/56 a╠
-
- è Now let m = 1, substitutïg ïë ê recusion relation gives
-
- è2(n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - (n+m)a┬ + a┬è=è0
-
- orè 2(n+1)na┬ + na┬▀¬ - (n+1)an + a┬ = 0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ 2n(n+1) - n ]a┬è=è-na┬▀¬
-
- èè[ n(2n+1) ]a┬è=è-na┬▀¬
-
- orèèèèèèèè nèèèèèèèèè 1
- èèèa┬è=è- ───────── a┬▀¬è=è- ────── a┬▀¬èè n ≥ 1
- èèèèèèèèn(2n+1)èèèèèèè2n+1
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -1/[2(1)+1] a╠ = -1/3 a╠
-
- 2èèè a½ = -1/[2(2)+1] a¬ = -1/5 a¬ = 1/15 a╠
-
- Thus ê general solution is
-
- èC¬ xî»ì [ 1 - 1/4 xè+è3/56 xìè- ∙∙∙ ]
-
- + C½ x [ 1 - 1/3 xè+ 1/15 xì - ∙∙∙ ]
-
- CASE IIèReal roots that eiêr are repeated ç differ by an
- ïteger.èThis case corresponds ë ê repeated roots case
- ç ê EULER differential equation.èIn particular, one series
- solution, correspondïg ë ê LARGER root (if different) will
- be found.èThe oêr solution will contaï a facër ïvolvïg
- ê NATURAL LOGARITHM function ë make it LINEARLY INDEPENDENT.
- Its specific form can be found usïg Reduction ï Order,
- Section 4.2 or by methods not covered ï this program.
-
- CASE IIIèComplex conjugate roots.èHere ê roots do not
- differ by an ïteger as êy are complex conjugates ç each
- oêr so êre will be two power series solutions.èHowever,
- sïce ê exponents are complex, a technique similar ë ê
- one used ï ê similar Euler differential equation must be
- employed å ên ê Euler formula is used ë convert an
- imagïary exponential ë equivalent trig functions.èAs ï
- ê Euler differential equation case, natural logarithmic
- functions will be produced.
-
- 5 2xìy»» + xy» + (x-1)y = 0èabout x = 0
-
- A)è C¬xúî»ì[1 + xè+ 1/2 xì] + C½x[1 + 1/6 xè+ 1/90 xì]
- B)è C¬xúî»ì[1 + xè+ 1/2 xì] + C½x[1 - 1/6 xè+ 1/90 xì]
- C)è C¬xúî»ì[1 + xè- 1/2 xì] + C½x[1 + 1/6 xè+ 1/90 xì]
- D)è C¬xúî»ì[1 + xè- 1/2 xì] + C½x[1 - 1/6 xè+ 1/90 xì]
-
- ü è Assume a solution ç ê form
- èèèèèèèè ▄èèèèèè▄
- y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
- èèèèn=0èèèèèn=0
-
- where m can be an arbitrary real number, not just an ïteger.
-
- èèDifferentiation yields
- èèè▄
- y» =èΣè(n+m)a┬xⁿó¡úî
- èè n=0
-
- èèè ▄
- y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
- èèèn=0
-
- Substitute ïëèè2xìy»» + xy» + (x-1)y = 0èë yield
-
- èèèè ▄èèèèèèèèèèèèèè ▄
- èè2xìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ xèΣ (n+m)a┬xⁿó¡úî
- èèèèn=0èèèèèèèèèèèèè n=0
- èèèèèèèè ▄
- èèèè+ (x-1)èΣèa┬xⁿó¡è=è0
- èèèèèèèèn=0
-
- orè ▄èèèèèèèèèèèèè▄
- èè Σè2(n+m)(n+m-1)a┬xⁿó¡è+èΣè(n+m)a┬xⁿó¡ +
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèèèè▄
- èèèèΣèa┬xⁿó¡óîè-èΣèa┬xⁿó¡è=è0
- èèèèn=0èèèèèèèèn=0
-
- As ê third sum's exponent is different from ê rest, it
- will be re-ïdexed so that all exponents are ê same.
-
- èè ▄èèèèèèèèèèèèè▄
- èè Σè2(n+m)(n+m-1)a┬xⁿó¡è+èΣè(n+m)a┬xⁿó¡
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèè ▄
- èèè+èΣèa┬▀¬xⁿó¡è-èΣèa┬xⁿó¡è=è0
- èèèèn=0èèèèèè n=0
-
- As ê second sum starts at n = 1 while ê oêrs start at
- n = 0, ê first term will be isolated å ê remaïïg
- terms combïed ïë one sum
-
- 0è=è[ 2m(m-1) + m - 1 ] a╠x¡
- è ▄
- +èΣè{ 2(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬ - a┬ }xⁿó¡
- èn=1
-
- è For differential equation ë have a non-trivial solution,
- ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
- yields ê INDICIAL EQUATION
-
- 2m(m-1) + m - 1è=è0
-
- orèèè2mì - m - 1è=è0
-
- This facërs ë
-
- (2m + 1)(m - 1) = 0
-
- The solutions are
-
- m = -1/2, 1
-
-
- èèIf eiêr ç êse two solutions ç ê ïdical equation,
- are subsituted ïë ê assumed solution, ê first term ç
- ê solution will be zero, so for m = -1/2 or 1 this
- reduces ë
- ▄
- Σ { 2(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬ - a┬ }xⁿó¡è=è0
- n=1
-
- For this sum ë be zero, it is sufficient that every term ï
- ê braces is zero.èSettïg each ë zero produces ê
- RECURSION RELATION which for this example will be
-
- èè 2(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬ - a┬è=è0
-
- As ê roots for m are distïct å do not differ by an
- ïteger, subsitutïg -1/2 å ên 1 ïë ê recursion relation
- will produce two LINEARLY INDPENDENT power series solutions.
-
- èèFirst, let m = -1/2 å substitute ïë ê recursion
- relation
-
- èè2(n-1/2)(n-3/2)a┬ + (n-1/2)a┬ + a┬▀¬ - a┬ = 0
-
- Multiplyïg through by 2 ë get rid ç ê fractions gives
-
- èè(2n-1)(2n-3)a┬ + (2n-1)a┬▀¬ + 2a┬ - 2a┬ = 0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ (2n-1)(2n-3) + (2n-1) - 2 ] a┬è=è- 2a┬▀¬
-
- orèèèèèèèèèèè 2
- èèèa┬ =è- ───────────────────────èa┬▀¬è n ≥ 1
- èèèèèèè (2n-1)(2n-3)+(2n-1)-2
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -2/[1(-1)+1-2] a╠ =èa╠
-
- 2èèè a½ = -2/[3(1)+3-2] a¬ = -1/2 a¬ = -1/2 a╠
-
- è Now let m = 1, substitutïg ïë ê recusion relation gives
-
- èèè2(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬ - a┬è=è0
-
- orèè2(n+1)na┬ + (n+1)a┬ + a┬▀¬ - a┬ = 0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ 2n(n+1) + n+1 - 1 ]a┬è=è-a┬▀¬
-
- èè[ n(2n+1) + n ]a┬è=è-a┬▀¬
-
- èè[ (2n+1)(n+1) ]a┬è=è-a┬▀¬
-
- Rearrangïg
- èèèèèèèèèè 1èèèèèè
- èèèa┬è=è- ───────────── a┬▀¬èèèn ≥ 1
- èèèèèèèè(2n+1)(n+1)èèè
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -1/[3(2)] a╠ = -1/6 a╠
-
- 2èèè a½ = -1/[5(3)] a¬ = -1/15 a¬ = 1/90 a╠
-
- Thus ê general solution is
-
- èC¬ xúî»ì [ 1 + xè- 1/2 xìè- ∙∙∙ ]
-
- + C½ x [ 1 - 1/6 xè+ 1/90 xì - ∙∙∙ ]
-
- Ç D
-
- 6è 3xìy»» + xy» + xyè=è0èabout x = 0
-
- A)è C¬[1 + x + 1/8xì ] + C½x[1 + 1/5 xè+ 1/80 xì]
- B)è C¬[1 + x + 1/8xì ] + C½x[1 - 1/5 xè+ 1/80 xì]
- C)è C¬[1 - x + 1/8xì ] + C½x[1 + 1/5 xè+ 1/80 xì]
- D)è C¬[1 - x + 1/8xì ] + C½x[1 - 1/5 xè+ 1/80 xì]
-
- ü è Assume a solution ç ê form
- èèèèèèèèèèèè ∞èèè
- èèèèy =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
- èèèèn=0èèèèèn=0
-
- where m can be an arbitrary real number, not just an ïteger.
-
- èèDifferentiation yields
- èèè▄
- y» =èΣè(n+m)a┬xⁿó¡úî
- èè n=0
-
- èèè ▄
- y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
- èèèn=0
-
- Substitute ïëè3xìy»» + xy» + xyè=è0èë yield
-
- èèèè ▄èèèèèèèèèèèèèè ▄
- èè3xìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ xèΣ (n+m)a┬xⁿó¡úî
- èèèèn=0èèèèèèèèèèèèè n=0
- èèèèèè▄
- èèèè+ x Σèa┬xⁿó¡è=è0
- èèèèè n=0
-
- As ê third sum's exponent is different from ê rest, it
- will be re-ïdexed so that all exponents are ê same.
-
- orè ▄èèèèèèèèèèèèè▄
- èè Σè3(n+m)(n+m-1)a┬xⁿó¡è+èΣè(n+m)a┬xⁿó¡
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèèèè
- èèè+èΣèa┬xⁿó¡óîè =è0
- èèèèn=0
-
- As ê third sum's exponent is different from ê rest, it
- will be re-ïdexed so that all exponents are ê same.
-
- èè ▄èèèèèèèèèèèèè▄
- èè Σè3(n+m)(n+m-1)a┬xⁿó¡è+èΣè(n+m)a┬xⁿó¡
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèèèè
- èèè+èΣèa┬▀¬xⁿó¡è =è0
- èèèèn=1
-
- As ê third sum starts at n = 1 while ê oêrs start at
- n = 0, ê first term will be isolated å ê remaïïg t
- erms combïed ïë one sum
-
- 0è=è[ 3m(m-1) + m ] a╠x¡
- è ▄
- +èΣè{ 3(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬ }xⁿó¡
- èn=1
-
- è For differential equation ë have a non-trivial solution,
- ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
- yields ê INDICIAL EQUATION
-
- 3m(m-1) + mè=è0
-
- orèèè3mì - 2mè=è0
-
- This facërs ë
-
- m(3m - 2) = 0
-
- The solutions are
-
- m = 0, 2/3
-
- èèIf eiêr ç êse two solutions ç ê ïdical equation,
- are subsituted ïë ê assumed solution, ê first term ç
- ê solution will be zero, so for m = 0 or 2/3 this
- reduces ë
- ▄
- Σ { 3(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬ }xⁿó¡è=è0
- n=1
-
- For this sum ë be zero, it is sufficient that every term ï
- ê braces is zero.èSettïg each ë zero produces ê
- RECURSION RELATION which for this example will be
-
- èè 3(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬è=è0
-
- As ê roots for m are distïct å do not differ by an
- ïteger, subsitutïg 0 å ên 2/3 ïë ê recursion
- relation will produce two LINEARLY INDPENDENT power series
- solutions.
-
- èèFirst, let m = 0 å substitute ïë ê recursion
- relation
-
- èè3(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬è=è0
-
- èèèè3n(n-1)a┬ + na┬ + a┬▀¬ = 0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ 3n(n-1) + n ] a┬è=è- a┬▀¬
-
- orèèèèèèèè1
- èèèa┬ =è- ─────────èa┬▀¬è n ≥ 1
- èèèèèèè n(3n-2)
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -1/[1(1)] a╠ =è-a╠
-
- 2èèè a½ = -1/[2(4)] a¬ = -1/8 a¬ = 1/8 a╠
-
- è Now let m = 2/3, substitutïg ïë ê recusion relation
- gives
-
- èèè3(n+m)(n+m-1)a┬ + (n+m)a┬ + a┬▀¬è=è0
-
- orèè3(n+2/3)(m-1/3)a┬ + (n+2/3)a┬ + a┬▀¬è= 0
-
- Multiplyïg by 3 ë clear ê fractions gives
-
- èèè(3n+2)(3n-1)a┬ + (3n+2)a┬ + 3a┬▀¬è=è0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ (3n+2)(3n-1) + (3n+2) ]a┬è=è- 3a┬▀¬
-
- èè[ 3n(3n+2) ]a┬è=è-3a┬▀¬
-
- Rearrangïg
- èèèèèèèèè 1èèèèèè
- èèèa┬è=è- ───────── a┬▀¬èèèn ≥ 1
- èèèèèèèèn(3n+2)èèè
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -1/[1(5)] a╠ = -1/5 a╠
-
- 2èèè a½ = -1/[2(8)] a¬ = -1/16 a¬ = 1/80 a╠
-
- Thus ê general solution is
-
- èC¬ [ 1 - xè+ 1/8 xìè- ∙∙∙ ]
-
- + C½ x [ 1 - 1/5 xè+ 1/80 xì - ∙∙∙ ]
-
- Ç D
-
- 7è 9xìy»» + 9xy» + (9x-4)yè=è0è about x = 0
-
- A)è C¬xúì»Ä[1 + 3x + 9/4xì] + C½xì»Ä[1 + 3/7x + 3/91 xì]
- B)è C¬xúì»Ä[1 + 3x + 9/4xì] + C½xì»Ä[1 - 3/7x + 3/91 xì]
- C)è C¬xúì»Ä[1 + 3x - 9/4xì] + C½xì»Ä[1 + 3/7x + 3/91 xì]
- D)è C¬xúì»Ä[1 + 3x - 9/4xì] + C½xì»Ä[1 - 3/7x + 3/91 xì]
-
- ü è Assume a solution ç ê form
- èèèèèèèè ▄èèèèèè▄
- y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
- èèèèn=0èèèèèn=0
-
- where m can be an arbitrary real number, not just an ïteger.
-
- èèDifferentiation yields
- èèè▄
- y» =èΣè(n+m)a┬xⁿó¡úî
- èè n=0
-
- èèè ▄
- y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
- èèèn=0
-
- Substitute ïëè9xìy»» + 9xy» + (9x-4)yè=è0èë yield
-
- èèèè ▄èèèèèèèèèèèèèèè▄
- èè9xìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ 9xèΣ (n+m)a┬xⁿó¡úî
- èèèèn=0èèèèèèèèèèèèèèn=0
- èèèèèèèè ▄
- èèèè+ (9x-4) Σèa┬xⁿó¡è=è0
- èèèèèèèèn=0
-
- orè ▄èèèèèèèèèèèèè▄
- èè Σè9(n+m)(n+m-1)a┬xⁿó¡è+èΣ 9(n+m)a┬xⁿó¡ +
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèè▄
- èèèèΣè9a┬xⁿó¡óî -èΣè4a┬xⁿó¡è =è0
- èèèèn=0èèèèèèn=0
-
- As ê third sum's exponent is different from ê rest, it
- will be re-ïdexed so that all exponents are ê same.
-
- èè ▄èèèèèèèèèèèèè▄
- èè Σè9(n+m)(n+m-1)a┬xⁿó¡è+èΣè9(n+m)a┬xⁿó¡
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèèè▄
- èèè+èΣè9a┬╪¬xⁿó¡è-èΣè4a┬xⁿó¡è=è0
- èèèèn=1èèèèèèèn=0
-
- As ê third sum starts at n = 1 while ê oêrs start at
- n = 0, ê first term will be isolated å ê remaïïg
- terms combïed ïë one sum
-
- 0è=è[ 9m(m-1) + 9m - 4 ] a╠x¡
- è ▄
- +èΣè{ 9(n+m)(n+m-1)a┬ + 9(n+m)a┬ + 9a┬▀¬ - 4a┬ }xⁿó¡
- èn=1
-
- è For differential equation ë have a non-trivial solution,
- ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
- yields ê INDICIAL EQUATION
-
- 9m(m-1) + 9m - 4è=è0
-
- orèèè9mì - 4è=è0
-
- This facërs ë
-
- (3m + 2)(3m - 2) = 0
-
- The solutions are
-
- m = -2/3, 2/3
-
- èèIf eiêr ç êse two solutions ç ê ïdical equation,
- are subsituted ïë ê assumed solution, ê first term ç
- ê solution will be zero, so for m = -2/3 or 2/3 this
- reduces ë
- ▄
- Σ { 9(n+m)(n+m-1)a┬ + 9(n+m)a┬ + 9a┬▀¬ - 4a┬ }xⁿó¡è=è0
- n=1
-
- For this sum ë be zero, it is sufficient that every term ï
- ê braces is zero.èSettïg each ë zero produces ê
- RECURSION RELATION which for this example will be
-
- èè 9(n+m)(n+m-1)a┬ + 9(n+m)a┬ + 9a┬▀¬ - 4a┬è=è0
-
- As ê roots for m are distïct å do not differ by an
- ïteger, subsitutïg -2/3 å ên 2/3 ïë ê recursion
- relation will produce two LINEARLY INDPENDENT power series
- solutions.
-
- èèFirst, let m = 2/3 å substitute ïë ê recursion
- relation
-
- èè 9(n+m)(n+m-1)a┬ + 9(n+m)a┬ + 9a┬▀¬ - 4a┬è=è0
-
- èè 9(n-2/3)(n-5/3)a┬ + 9(n-2/3)a┬ + 9a┬▀¬ - 4a┬ = 0
- èè
- èè (3n-2)(3n-5)a┬ + 3(3n-2)a┬ + 9a┬▀¬ - 4a┬è=è0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ (3n-2)ì - 4 ] a┬è=è- 9a┬▀¬
-
- orèèèèèèèèè9
- èèèa┬ =è- ───────────èa┬▀¬è n ≥ 1
- èèèèèèè (3n-2)ì-4
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -9/[1ì-4] a╠ =è3a╠
-
- 2èèè a½ = -9/[4ì-4] a¬ = -3/4 a¬ = -9/4 a╠
-
- è Now let m = 2/3, substitutïg ïë ê recusion relation
- gives
-
- èèè9(n+m)(n+m-1)a┬ + 9(n+m)a┬ + 9a┬▀¬ - 4a┬è=è0
-
- orèè9(n+2/3)(n-1/3)a┬ + 9(n+2/3)a┬ + 9a┬▀¬ - 4a┬è= 0
-
- orèè(3n+2)(3n-1)a┬ + 3(3m+2)a┬ + 9a┬▀¬ -4a┬è= 0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ (3n+2)(3n-1) + 3(3n+2) - 4 ]a┬è=è- 9a┬▀¬
-
- èè[ (3n+2)ì - 4 ]a┬è=è-9a┬▀¬
-
- Rearrangïg
- èèèèèèèèè 9
- èèèa┬è=è- ───────── a┬▀¬èèèn ≥ 1
- èèèèèèè (3n+2)ì-4èèè
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -9/21 a╠ = -3/7 a╠
-
- 2èèè a½ = -9/117 a¬ = -1/13 a¬ = 3/91 a╠
-
- Thus ê general solution is
-
- èC¬ xúì»Ä [ 1 + 3xè- 9/4 xìè- ∙∙∙ ]
-
- + C½ xì»Ä [ 1 - 3/7 xè+ 3/91 xì - ∙∙∙ ]
-
- Ç D
-
- 8 xìy»» + (xì-3x)y» + 2xyè=è0
-
- A)è C¬ xÄ [ 1 + 5/9 xè+ 10/51 xìè- ∙∙∙ ]
- B)è C¬ xÄ [ 1 + 5/9 xè- 10/51 xìè- ∙∙∙ ]
- C)è C¬ xÄ [ 1 - 5/9 xè+ 10/51 xìè- ∙∙∙ ]
- D)è C¬ xÄ [ 1 - 5/9 xè- 10/51 xìè- ∙∙∙ ]
-
- ü è Assume a solution ç ê form
- èèèèèèèè ▄èèèèèè▄
- y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
- èèèèn=0èèèèèn=0
-
- where m can be an arbitrary real number, not just an ïteger.
-
- èèDifferentiation yields
- èèè▄
- y» =èΣè(n+m)a┬xⁿó¡úî
- èè n=0
-
- èèè ▄
- y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
- èèèn=0
-
- Substitute ïëèxìy»» + (xì-3x)y» + 2xyè=è0èë yield
-
- èèèè▄èèèèèèèèèèèèèèèèè ▄
- èèxìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ (xì-3x)èΣ (n+m)a┬xⁿó¡úî
- èèèèn=0èèèèèèèèèèèèèèn=0
- èèèèèèèè ▄
- èèèè+ 2xy Σèa┬xⁿó¡è=è0
- èèèèèèèèn=0
-
- orè ▄èèèèèèèèèèèè ▄
- èè Σè(n+m)(n+m-1)a┬xⁿó¡è+èΣ (n+m)a┬xⁿó¡óî
- èèn=0èèèèèèèèèèè n=0
- èèèè ▄èèèèèèè▄
- èèè-èΣè3a┬xⁿó¡ +è Σè2a┬xⁿó¡óîè =è0
- èèèèn=0èèèèèèn=0
-
- As ê second å fourth sum's exponent is different from ê
- rest, it will be re-ïdexed so that all exponents are ê
- same.
-
- èè ▄èèèèèèèèèèèè ▄
- èè Σè(n+m)(n+m-1)a┬xⁿó¡è+èΣè(n+m-1)a┬▀¬xⁿó¡
- èèn=0èèèèèèèèèèè n=1
- èèèè ▄èèèèèèè▄
- èèè-èΣè3a┬xⁿó¡è+èΣè2a┬▀¬xⁿó¡è=è0
- èèèèn=0èèèèèèn=1
-
- As ê second å fourth sums starts at n = 1 while ê oêrs
- start at n = 0, ê first term will be isolated å ê
- remaïïg terms combïed ïë one sum
-
- 0è=è[ m(m-1) - 2m ] a╠x¡
- è ▄
- +èΣè{ (n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - 3a┬ + 2a┬▀¬ }xⁿó¡
- èn=1
-
- è For differential equation ë have a non-trivial solution,
- ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
- yields ê INDICIAL EQUATION
-
- m(m-1) - 2mè=è0
-
- orèèèmì - 3mè=è0
-
- This facërs ë
-
- m(m - 3) = 0
-
- The solutions are
-
- m = 0, 3
-
- èèIf eiêr ç êse two solutions ç ê ïdical equation,
- are subsituted ïë ê assumed solution, ê first term ç
- ê solution will be zero, so for m = 0 or 3 this
- reduces ë
- ▄
- Σ { (n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - 3a┬ + 2a┬▀¬ }xⁿó¡è=è0
- n=1
-
- For this sum ë be zero, it is sufficient that every term ï
- ê braces is zero.èSettïg each ë zero produces ê
- RECURSION RELATION which for this example will be
-
- èè (n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - 3a┬ + 2a┬▀¬è=è0
-
- As ê roots for m are distïct å DIFFER BY AN INTEGER,
- this technique will only one solution will be produced by
- this technique.èIt will come from substitutïg ê larger
- solution, m = 3, back ïë ê recursion relation which is
-
- èè (n+m)(n+m-1)a┬ + (n+m-1)a┬▀¬ - 3a┬ + 2a┬▀¬è=è0
-
- ë yield
-
- èè(n+3)(n+2)a┬ + (n+2)a┬▀¬ - 3a┬ + 2a┬▀¬è= 0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ (n+3)(n+2) - 3 ]a┬è=è- [ (n+2) + 2 ] a┬▀¬
-
- Rearrangïg
- èèèèèèèèèèn+4
- èèèa┬è=è- ───────────── a┬▀¬èèèn ≥ 1
- èèèèèèè (n+3)(n+2)-3èèè
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -5/[4(3)-3] a╠ = -5/9 a╠
-
- 2èèè a½ = -6/[5(4)-3] a¬ = -6/17 a¬ = 10/51 a╠
-
- Thus one solution is
-
- èC¬ xÄ [ 1 - 5/9 xè+ 10/51 xìè- ∙∙∙ ]
-
- Ç B
- 9 4xìy»» + 4xy» + (3x-1)yè=è0
-
- A)èèC¬ xî»ì [ 1 + 3/4 xè+ 9/80 xìè- ∙∙∙ ]
- B)èèC¬ xî»ì [ 1 + 3/4 xè- 9/80 xìè- ∙∙∙ ]
- C)èèC¬ xî»ì [ 1 - 3/4 xè+ 9/80 xìè- ∙∙∙ ]
- D)èèC¬ xî»ì [ 1 - 3/4 xè- 9/80 xìè- ∙∙∙ ]
-
-
- ü è Assume a solution ç ê form
- èèèèèèèè ▄èèèèèè▄
- y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
- èèèèn=0èèèèèn=0
-
- where m can be an arbitrary real number, not just an ïteger.
-
- èèDifferentiation yields
- èèè▄
- y» =èΣè(n+m)a┬xⁿó¡úî
- èè n=0
-
- èèè ▄
- y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
- èèèn=0
-
- Substitute ïëè4xìy»» + 4xy» + (3x-1)yè=è0èë yield
-
- èèèè ▄èèèèèèèèèèèèèèè▄
- èè4xìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ 4xèΣ (n+m)a┬xⁿó¡úî
- èèèèn=0èèèèèèèèèèèèèèn=0
- èèèèèèèè ▄
- èèèè+ (3x-1) Σèa┬xⁿó¡è=è0
- èèèèèèèèn=0
-
- orè ▄èèèèèèèèèèèèè▄
- èè Σè4(n+m)(n+m-1)a┬xⁿó¡è+èΣ 4(n+m)a┬xⁿó¡
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèèè▄
- èèè+èΣè3a┬xⁿó¡óî -è Σèa┬xⁿó¡è =è0
- èèèèn=0èèèèèèèn=0
-
- As ê third sum's exponent is different from ê rest, it
- will be re-ïdexed so that all exponents are ê same.
-
- èè ▄èèèèèèèèèèèèè▄
- èè Σè4(n+m)(n+m-1)a┬xⁿó¡è+èΣè4(n+m-1)a┬▀¬xⁿó¡
- èèn=0èèèèèèèèèèèèn=0
- èèèè ▄èèèèèèèèè▄
- èèè+èΣè3a┬▀¬xⁿó¡óîè-èΣèa┬xⁿó¡è=è0
- èèèèn=1èèèèèèèèn=0
-
- As ê third sum starts at n = 1 while ê oêrs start at
- n = 0, ê first term will be isolated å ê remaïïg
- terms combïed ïë one sum.
-
- 0è=è[ 4m(m-1) + 4m - 1 ] a╠x¡
- è ▄
- +èΣè{ 4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬ }xⁿó¡
- èn=1
-
- è For differential equation ë have a non-trivial solution,
- ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
- yields ê INDICIAL EQUATION
-
- 4m(m-1) + 4m - 1è=è0
-
- orèèè4mì - 1è=è0
-
- This facërs ë
-
- (2m - 1)(2m + 1) = 0
-
- The solutions are
-
- m = -1/2, 1/2
-
- èèIf eiêr ç êse two solutions ç ê ïdical equation,
- are subsituted ïë ê assumed solution, ê first term ç
- ê solution will be zero, so for m = 0 or 3 this
- reduces ë
- ▄
- Σ {è4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬ }xⁿó¡è=è0
- n=1
-
- For this sum ë be zero, it is sufficient that every term ï
- ê braces is zero.èSettïg each ë zero produces ê
- RECURSION RELATION which for this example will be
-
- èèè4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬è=è0
-
- As ê roots for m are distïct å DIFFER BY AN INTEGER,
- this technique will only one solution will be produced by
- this technique.èIt will come from substitutïg ê larger
- solution, m = 1/2, back ïë ê recursion relation which is
-
- èè 4(n+m)(n+m-1)a┬ + 4(n+m-1)a┬ + 3a┬▀¬ - a┬è=è0
-
- ë yield
-
- èè4(n+1/2)(n-1/2)a┬ + 4(n-1/2)a┬ + 3a┬▀¬ - a┬è= 0
-
- orèè(2n+1)(2n-1)a┬ + 2(2n-1) + 3a┬▀¬ - a┬è=è0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ (2n+1)(2n-1) + 2(2n-1) - 1 ]a┬è=è- 3 a┬▀¬
-
- Rearrangïg
- èèèèèèèèèèè3
- èèèa┬è=è- ────────────── a┬▀¬èèèn ≥ 1
- èèèèèèè (2n+3)(2n-1)-1èèè
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = -3/[5(1)-1] a╠ = -3/4 a╠
-
- 2èèè a½ = -3/[7(3)-1] a¬ = -3/20 a¬ = 9/80 a╠
-
- Thus one solution is
-
- èC¬ xî»ì [ 1 - 3/4 xè+ 9/80 xìè- ∙∙∙ ]
-
- Ç B
-
- 10 xìy»» - 3xy» + (4-x)yè=è0
-
- A)è C¬ xì [ 1 + 1/4 xè+ 1/36 xìè+ ∙∙∙ ]
- B)è C¬ xì [ 1 + 1/4 xè- 1/36 xìè+ ∙∙∙ ]
- C)è C¬ xì [ 1 - 1/4 xè+ 1/36 xìè+ ∙∙∙ ]
- D)è C¬ xì [ 1 - 1/4 xè- 1/36 xìè+ ∙∙∙ ]
-
- ü è Assume a solution ç ê form
- èèèèèèèè ▄èèèèèè▄
- y =èx¡èΣèa┬xⁿè =èΣèa┬xⁿó¡
- èèèèn=0èèèèèn=0
-
- where m can be an arbitrary real number, not just an ïteger.
-
- èèDifferentiation yields
- èèè▄
- y» =èΣè(n+m)a┬xⁿó¡úî
- èè n=0
-
- èèè ▄
- y»» =èΣè(n+m)(n+m-1)a┬xⁿó¡úì
- èèèn=0è
-
- Substitutïgèxìy»» - 3xy» + (4-x)yè=è0èyields
-
- èèèè▄èèèèèèèèèèèèèèè▄
- èèxìèΣè(n+m)(n+m-1)a┬xⁿó¡úìè+ 5xèΣ (n+m)a┬xⁿó¡úî
- èèè n=0èèèèèèèèèèèèèèn=0
- èèèèèèèè ▄
- èèèè+ (4-x) Σèa┬xⁿó¡è=è0
- èèèèèèèèn=0
-
- orè ▄èèèèèèèèèèèè ▄
- èè Σè(n+m)(n+m-1)a┬xⁿó¡è-èΣ 3(n+m)a┬xⁿó¡
- èèn=0èèèèèèèèèèè n=0
- èèèè ▄èèèèèèèè▄
- èèè+èΣè4a┬xⁿó¡ -è Σèa┬xⁿó¡óîè =è0
- èèèèn=0èèèèèèèn=0
-
- As ê fourth sum's exponent is different from ê rest, it
- will be re-ïdexed so that all exponents are ê same.
-
- èè ▄èèèèèèèèèèèè ▄
- èè Σè(n+m)(n+m-1)a┬xⁿó¡è-èΣè3(n+m-1)a┬▀¬xⁿó¡
- èèn=0èèèèèèèèèèè n=0
- èèèè ▄èèèèèèè▄
- èèè+èΣè4a┬xⁿó¡è-èΣèa┬▀¬xⁿó¡óîè=è0
- èèèèn=0èèèèèèn=1
-
- As ê fourth sum starts at n = 1 while ê oêrs start at
- n = 0, ê first term will be isolated å ê remaïïg
- terms combïed ïë one sum.
-
- 0è=è[ m(m-1) - 3m + 4 ] a╠x¡
- è ▄
- +èΣè{ (n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬ }xⁿó¡
- èn=1
-
- è For differential equation ë have a non-trivial solution,
- ê coefficient ç a╠x¡ must be zero.èSettïg it ë zero
- yields ê INDICIAL EQUATION
-
- m(m-1) - 3m + 4è=è0
-
- orèèèmì - 4m + 4è=è0
-
- This facërs ë
-
- (m-2)ì = 0
-
- The solutions are
-
- m = 2, 2
-
- èèIf êse two solutions ç ê ïdical equation are
- subsituted ïë ê assumed solution, ê first term ç
- ê solution will be zero, so for m = 2 this reduces ë
-
- ▄
- Σ { (n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬ }xⁿó¡è=è0
- n=1
-
- For this sum ë be zero, it is sufficient that every term ï
- ê braces is zero.èSettïg each ë zero produces ê
- RECURSION RELATION which for this example will be
-
- èèè(n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬è=è0
-
- As ê roots for m are REPEATED, this technique will only one
- solution will be produced by this technique.èIt will come
- from substitutïg ê solution, m = 2, back ïë ê
- recursion relation which is
-
- èè (n+m)(n+m-1)a┬ - 3(n+m-1)a┬ + 4a┬ - a┬▀¬è=è0
-
- ë yield
-
- èè(n+2)(n+3)a┬ - 3(n+3)a┬ + 4a┬ - a┬▀¬è= 0
-
- Combïïg like terms å rearrangïg yields
-
- èè[ (n+3)(n-1) + 4 ]a┬è=è a┬▀¬
-
- Rearrangïg
- èèèèèèèèèè1
- èèèa┬è=è────────────── a┬▀¬èèèn ≥ 1
- èèèèèèè(n+3)(n-1)+4èèè
-
- The first few terms are
- nèèèèè a┬
- ───èèèè ────
- 1èèè a¬ = 1/[4(0)+4] a╠ = 1/4 a╠
-
- 2èèè a½ = 1/[5(1)+4] a¬ = 1/9 a¬ = 1/36 a╠
-
- Thus one solution is
-
- èC¬ xì [ 1 + 1/4 xè+ 1/36 xìè+ ∙∙∙ ]
-
- Ç A
-